Modeling motion blur in computer-generated images

Abstract
This paper describes a procedure for modeling motion blur in computer-generated images. Motion blur in photography or cinematography is caused by the motion of objects during the finite exposure time the camera shutter remains open to record the image on film. In computer graphics, the simulation of motion blur is useful both in animated sequences where the blurring tends to remove temporal aliasing effects and in static images where it portrays the illusion of speed or movement among the objects in the scene. The camera model developed for simulating motion blur is described in terms of a generalized image-formation equation. This equation describes the relationship between the object and corresponding image points in terms of the optical system-transfer function. The use of the optical system-transfer function simplifies the description of time-dependent variations of object motion that may occur during the exposure time of a camera. This approach allows us to characterize the motion of objects by a set of system-transfer functions which are derived from the path and velocity of objects in the scene and the exposure time of a camera.

This publication has 9 references indexed in Scilit: