Nuclear Targeting of Akt Enhances Kinase Activity and Survival of Cardiomyocytes
- 16 April 2004
- journal article
- research article
- Published by Wolters Kluwer Health in Circulation Research
- Vol. 94 (7), 884-891
- https://doi.org/10.1161/01.res.0000124394.01180.be
Abstract
Heart failure is associated with death of cardiomyocytes leading to loss of contractility. Previous studies using membrane-targeted Akt (myristolated-Akt), an enzyme involved in antiapoptotic signaling, showed inhibition of cell death and prevention of pathogenesis induced by cardiomyopathic stimuli. However, recent studies by our group have found accumulation of activated Akt in the nucleus, suggesting that biologically relevant target(s) of Akt activity may be located there. To test this hypothesis, a targeted Akt construct was created to determine the antiapoptotic action of nuclear Akt accumulation. Nuclear localization of the adenovirally encoded Akt construct was confirmed by confocal microscopy. Cardiomyocytes expressing nuclear-targeted Akt showed no evidence of morphological remodeling such as altered myofibril density or hypertrophy. Nuclear-targeted Akt significantly elevated levels of phospho-Akt and kinase activity and inhibited apoptosis as effectively as myristolated-Akt in hypoxia-induced cell death. Transgenic overexpression of nuclear-targeted Akt did not result in hypertrophic remodeling, altered cardiomyocyte DNA content or nucleation, or enhanced phosphorylation of typical cytoplasmic Akt substrates, yet transgenic hearts were protected from ischemia-reperfusion injury. Gene array analyses demonstrated changes in the transcriptional profile of Akt/nuc hearts compared with nontransgenic controls distinct from prior characterizations of Akt expression in transgenic hearts. Collectively, these experiments show that targeting of Akt to the nucleus mediates inhibition of apoptosis without hypertrophic remodeling, opening new possibilities for therapeutic applications of nuclear-targeted Akt to inhibit cell death associated with heart disease.Keywords
This publication has 49 references indexed in Scilit:
- Akt Signaling Mediates Postnatal Heart Growth in Response to Insulin and Nutritional StatusPublished by Elsevier ,2002
- Transcriptional Effects of Chronic Akt Activation in the HeartJournal of Biological Chemistry, 2002
- Regulation of Insulin-Like Growth Factor Type I (IGF-I) Receptor Kinase Activity by Protein Tyrosine Phosphatase 1B (PTP-1B) and Enhanced IGF-I-Mediated Suppression of Apoptosis and Motility in PTP-1B-Deficient FibroblastsMolecular and Cellular Biology, 2002
- AKT/PKB Phosphorylation of p21Cip/WAF1 Enhances Protein Stability of p21Cip/WAF1 and Promotes Cell SurvivalJournal of Biological Chemistry, 2002
- The Akt-Glycogen Synthase Kinase 3β Pathway Regulates Transcription of Atrial Natriuretic Factor Induced by β-Adrenergic Receptor Stimulation in Cardiac MyocytesPublished by Elsevier ,2000
- The Regulation and Activities of the Multifunctional Serine/Threonine Kinase Akt/PKBExperimental Cell Research, 1999
- Cloning and characterization of a nuclear S6 kinase, S6 kinase-related kinase (SRK); A novel nuclear target of AktOncogene, 1999
- Induction of NF-κB by the Akt/PKB kinaseCurrent Biology, 1999
- Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase BNature, 1995
- Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transductionNature, 1995