Light Activates Output from Evening Neurons and Inhibits Output from Morning Neurons in the Drosophila Circadian Clock

Abstract
Animal circadian clocks are based on multiple oscillators whose interactions allow the daily control of complex behaviors. The Drosophila brain contains a circadian clock that controls rest–activity rhythms and relies upon different groups of PERIOD (PER)–expressing neurons. Two distinct oscillators have been functionally characterized under light-dark cycles. Lateral neurons (LNs) that express the pigment-dispersing factor (PDF) drive morning activity, whereas PDF-negative LNs are required for the evening activity. In constant darkness, several lines of evidence indicate that the LN morning oscillator (LN-MO) drives the activity rhythms, whereas the LN evening oscillator (LN-EO) does not. Since mutants devoid of functional CRYPTOCHROME (CRY), as opposed to wild-type flies, are rhythmic in constant light, we analyzed transgenic flies expressing PER or CRY in the LN-MO or LN-EO. We show that, under constant light conditions and reduced CRY function, the LN evening oscillator drives robust activity rhythms, whereas the LN morning oscillator does not. Remarkably, light acts by inhibiting the LN-MO behavioral output and activating the LN-EO behavioral output. Finally, we show that PDF signaling is not required for robust activity rhythms in constant light as opposed to its requirement in constant darkness, further supporting the minor contribution of the morning cells to the behavior in the presence of light. We therefore propose that day–night cycles alternatively activate behavioral outputs of the Drosophila evening and morning lateral neurons. Living organisms have evolved circadian clocks that anticipate daily changes in their environment. Their clockwork is fully endogenous, but can be reset by external cues. (Light is the most efficient cue.) The circadian neuronal network of the fruit fly (Drosophila) brain perceives light through the visual system and a dedicated photoreceptor molecule, cryptochrome. Flies exhibit a bimodal locomotor activity pattern that peaks at dawn and dusk in light–dark conditions. These morning and evening activity bouts are controlled by two distinct neuronal clocks in the fly brain. By using flies with a deficient cryptochrome pathway, we have uncovered an unexpected role for light in the circadian system. In addition to synchronizing the two oscillators to solar time, light also controls their behavioral output. The morning oscillator can periodically rouse the fly when in constant darkness, but not in constant light, whereas the evening oscillator can do the same in constant light, but not in constant darkness. This suggests the existence of a light-dependent switch between oscillators that appears to require the visual system. Such a mechanism likely contributes to better separate the active periods of the fly at dawn and dusk, and may help the animal to adapt to seasonal changes in day length.