Computation of Three-Dimensional Electric Field Problems by a Surface Charge Method and its Application to Optimum Insulator Design

Abstract
This paper describes an improved surface charge method for computation of three-dimensional electric field distribution and its application to optimum insulator design. In this method, each curved surface on which the charge is distributed is divided into many curved surface elements instead of planar elements. After computing numerically the charge distribution, the distributions of both potential and electric field are obtained. Because the use of many curved surface elements provides a good approximation of the insulator contour, the correction of insulator contour to achieve optimum insulator design can be performed smoothly.