Biosynthetic response and mechanical properties of articular cartilage after injurious compression
- 1 November 2001
- journal article
- Published by Wiley in Journal of Orthopaedic Research
- Vol. 19 (6), 1140-1146
- https://doi.org/10.1016/s0736-0266(01)00033-x
Abstract
Traumatic joint injury is known to produce osteoarthritic degeneration of articular cartilage. To study the effects of injurious compression on the degradation and repair of cartilage in vitro, we developed a model that allows strain and strain rate-controlled loading of cartilage explants. The influence of strain rate on both cartilage matrix biosynthesis and mechanical properties was assessed after single injurious compressions. Loading with a strain rate of 0.01 s(-1) to a final strain of 50% resulted in no measured effect on the cells or on the extracellular matrix, although peak stresses reached levels of about 12 MPa. However, compression with strain rates of 0.1 and 1 s(-1) caused peak stresses of approximately 18 and 24 MPa, respectively, and resulted in significant decreases in both proteoglycan and total protein biosynthesis. The mechanical properties of the explants (compressive and shear stiffness) were also reduced with increasing strain rate. Additionally, cell viability decreased with increasing strain rate, and the remaining viable cells lost their ability to exhibit an increase in biosynthesis in response to low-amplitude dynamic mechanical stimulation. This latter decrease in reparative response was most dramatic in the tissue compressed at the highest strain rates. We conclude that strain rate (like peak stress or strain) is an important parameter in defining mechanical injury, and that cartilage injuriously compressed at high strain rates can lose its characteristic anabolic response to low-amplitude cyclic mechanical loading.Keywords
This publication has 29 references indexed in Scilit:
- Compositional and metabolic changes in damaged cartilage are peak‐stress, stress‐rate, and loading‐duration dependentJournal of Orthopaedic Research, 1999
- Effects of injurious compression on matrix turnover around individual cells in calf articular cartilage explantsJournal of Orthopaedic Research, 1998
- The Proteoglycan Metabolism of Mature Bovine Articular Cartilage Explants Superimposed to Continuously Applied Cyclic Mechanical LoadingBiochemical and Biophysical Research Communications, 1997
- Matrix loss and synthesis following a single impact load on articular cartilage in vitroBiochimica et Biophysica Acta (BBA) - General Subjects, 1997
- Swelling and fibronectin accumulation in articular cartilage explants after cyclical impactJournal of Orthopaedic Research, 1996
- Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay.Journal of Clinical Investigation, 1994
- Viscoelastic shear properties of articular cartilage and the effects of glycosidase treatmentsJournal of Orthopaedic Research, 1993
- Immunolocalization of selected cytokines and proteases in canine articular cartilage after transarticular loadingJournal of Orthopaedic Research, 1993
- Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitroJournal of Orthopaedic Research, 1992
- Evaluation of fluorescein diacetate for flow cytometric determination of cell viability in orthopaedic researchJournal of Orthopaedic Research, 1988