Bradykinin-stimulated electrolyte secretion in rabbit and guinea pig intestine. Involvement of arachidonic acid metabolites.

Abstract
Bradykinin (BK) increases short-circuit current (Isc) when added to the serosal side of rabbit or guinea pig ileum or rabbit colon. Significant effects on Isc are seen at concentrations as low as 10(-10) M. Anion substitution experiments and unidirectional 36Cl flux measurements indicate that this effect of BK on Isc is due to Cl secretion. The effect of BK on Isc can be partially blocked (60-70% inhibition) by cyclooxygenase inhibitors (indomethacin and/or naproxen) and completely blocked by the phospholipase inhibitor, mepacrine. The combined cyclooxygenase/lipoxygenase inhibitors BW 755 and eicosa-5,8,11,14-tetraynoic acid (ETYA) also completely block the effect of BK on Isc but the slow-reacting substance of anaphylaxis (SRS-A) antagonist FPL 55712 has no effect. None of the above inhibitors diminish the effect on Isc of other exogenously added secretory stimuli such as vasoactive intestinal peptide (VIP), theophylline, or prostaglandin E2 (PGE2). Prior desensitization of rabbit ileum to PGE2 blocks the effect on Isc of BK but not those of VIP or theophylline. Conversely, prior desensitization of rabbit ileum to BK greatly reduces the effect of PGE2 on Isc. BK also stimulates the synthesis of PGE2 in rabbit ileal and colonic mucosa and this effect can be blocked by prior addition of either indomethacin or mepacrine. These effects of BK are similar to those of exogenously added arachidonic acid (AA). AA also stimulates Cl secretion and increases PGE2 synthesis and its effect on Isc can be inhibited by prior desensitization to PGE2 or by prior addition of indomethacin. The above results indicate that BK stimulates active Cl secretion in both small and large intestine and suggest that this effect is due to the intracellular release of AA. Although the prostaglandins appear to be the major products of AA metabolism contributing to the secretory response, lipoxygenase products may also play a role.