Ultrastructure and immunocytochemistry of the isolated human erythrocyte membrane skeleton

Abstract
Isolated skeletons from human erythrocyte ghosts were studied using immunogold labeling; negative staining; and quick-freeze, deep-etch, rotary replication with Pt/C (QFDERR). Isolated skeletons visualized by QFDERR were similar to the negatively stained skeletons in that the proteins spectrin, actin, and ankyrin could be easily distinguished. However, the quick-frozen skeletons had two fewer filaments (4.2 ± 0.7) at an actin junction. Immunogold labeling of skeletons with site-specific spectrin antibodies not only confirmed the designation of these filaments as spectrin molecules, but indicated that about 30% of spectrin filaments form non-actin junctions consistent with the hexameric organization of these filaments. Many of the filaments displayed a striking banding pattern indicative of underlying substructure. Isolated skeletons prepared by QFDERR also showed evidence of laterally associated spectrin filaments. These associations, as well as many hexamer junctions, are lost during negative staining. Negative staining also apparently caused ∼21% of the spectrin filaments to separate into their monomeric subunits. These results indicate that the surface tension imposed during negative staining of isolated skeletons can cause a loss of interactions normally present in the intact membrane skeleton.