Computing Discrete Minimal Surfaces and Their Conjugates

Abstract
We present a new algorithm to compute stable discrete minimal surfaces bounded by a number of fixed or free boundary curves in R 3, S 3 and H 3. The algorithm makes no restr iction on the genus and can handl e singular triangulations. Additionally, we present an algorithm that, starting from a discrete harmonic map, gives a conjugate harmonic map. This can be applied to the identity map on a minimal surface to produce its conjugate minimal surface, a procedure that often yields unstable solutions to a free boundary value problem for minimal surfaces. Symmetry properties of boundary curves are respected during conjugation.

This publication has 12 references indexed in Scilit: