Nanoscale quantum dot infrared sensors with photonic crystal cavity

Abstract
We report high performance infrared sensors that are based on intersubband transitions in nanoscale self-assembled quantum dots combined with a microcavity resonator made with a high-index-contrast two-dimensional photonic crystal. The addition of the photonic crystal cavity increases the photocurrent, conversion efficiency, and the signal to noise ratio (represented by the specific detectivity D* ) by more than an order of magnitude. The conversion efficiency of the detector at Vb=2.6V increased from 7.5% for the control sample to 95% in the PhC detector. In principle, these photonic crystal resonators are technology agnostic and can be directly integrated into the manufacturing of present day infrared sensors using existing lithographic tools in the fabrication facility.