Semiconductor Quantum Dot: A Quantum Light Source of Multicolor Photons with Tunable Statistics

Abstract
We investigate the intensity correlation properties of single photons emitted from an optically excited single semiconductor quantum dot. The second order temporal coherence function of the photons emitted at various wavelengths is measured as a function of the excitation power. We show experimentally and theoretically that a quantum dot is not only a source of nonclassically correlated monochromatic photons but is also a source of multicolor photons with tunable correlation properties. We found that the emitted photon statistics can be varied by the excitation rate from a sub-Poissonian one, where the photons are temporally antibunched, to super-Poissonian, where they are temporally bunched.
All Related Versions