Protein and nucleic acid metabolism in organs from mice selected for larger and smaller body size

Abstract
SUMMARY: Studies of the growth and composition of Q-strain mice selected over 20 generations for high and low body weight at 6 weeks of age, and their unselected controls, were made on livers and kidneys of males from the five selection replicates A, B, C, D and F. Differences in growth rate between Large and Small QD mice were confirmed from 2 to 9 weeks of age, but were greatest in the third, fourth, sixth and seventh weeks. Total amounts of dry matter, protein, free amino acids, bulk RNA and ribosomes were increased or decreased from control values in proportion to organ weight. A less-perfect relationship between DNA content and organ weight suggested that some small changes in average cell mass had accompanied the main change in cell number in organs from the selected lines. Absorbance profiles of polyribosomes from both organs were identical in selected and control mice: selection had not operated on the proportion of single (currently inactive) ribosomes. Attempts to relate the observed differences in growth rate in QD mice to differences in the rate of protein synthesis produced an unexpected result: incorporation of radioactively labelled amino acids was consistently higher in the organs of the Small mice. Measurements of rates of protein turnover, and calculated rates of protein degradation, suggested that protein might also be degraded more rapidly in the small mice.