Abstract
In animals with fur or feather coats, heat gain from solar radiation is a function of coat optical, structural, and insulative characteristics, as well as skin color and the optical properties of individual hairs or feathers. In this analysis, I explore the roles of these factors in determining solar heat gain in two desert rodents (the Harris antelope squirrel,Ammospermophilus harrisi, and the round-tailed ground squirrel,Spermophilus tereticaudus). Both species are characterized by black dorsal skin, though they contrast markedly in their general coat thickness and structure. Results demonstrate that changes in coat structure and hair optics can produce differences of up to 40% in solar heat gain between animals of similar color. This analysis also confirms that the model of Walsberg et al. (1978) accurately predicts radiative heat loads within about 5% in most cases. Simulations using this model indicate that dark skin coloration increases solar heat gain by ≤5%. However, dark skin significantly reduces ultraviolet transmission to levels about one-sixth of those of the lighter ventral skin.