Measurement of trehalose loading of mammalian cells porated with a metal‐actuated switchable pore

Abstract
Efforts to improve the tolerance of mammalian cells to desiccation have focused on the role that sugars have in protecting cells from lethal injury. Among the key determinants of desiccation tolerance is the intracellular trehalose concentration, and thus quantifying the amount and rate of trehalose accumulation has now become very critical to the success of these desiccation approaches. We introduced trehalose into 3T3 fibroblasts, human keratinocytes, and rat hepatocytes using a genetically engineered mutant of the pore‐forming α‐hemolysin from Staphylococcus aureus. Manipulating the extracellular Zn2+ concentration selectively opens and closes this pore (∼2 nm) and enables controlled loading of cells with sugars. We quantified intracellular trehalose using gas chromatography–mass spectroscopy (GC‐MS) to examine the trimethylsilyl derivative of intracellular trehalose. Using the GC‐MS method, we demonstrate that the switchable characteristics of H5 α‐hemolysin permit controlled loading of the high concentrations of trehalose (up to 0.5 M) necessary for engineering desiccation tolerance in mammalian cells. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 82: 525–532, 2003.