Novel LC-ESI/MS/MSn Method for the Characterization and Quantification of 2‘-Deoxyguanosine Adducts of the Dietary Carcinogen 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by 2-D Linear Quadrupole Ion Trap Mass Spectrometry

Abstract
An accurate and sensitive liquid chromatography-electrospray ionization/multi-stage mass spectrometry (LC-ESI/MS/MSn) technique has been developed for the characterization and quantification of 2‘-deoxyguanosine (dG) adducts of the dietary mutagen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). PhIP is an animal and potential human carcinogen that occurs in grilled meats. Following enzymatic digestion and adduct enrichment by solid-phase extraction (SPE), PhIP−DNA adducts were analyzed by MS/MS and MSn scan modes on a 2-D linear quadrupole ion trap mass spectrometer (QIT/MS). The major DNA adduct, N-(deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP), was detected in calf thymus (CT) DNA modified in vitro with a bioactivated form of PhIP and in the colon and liver of rats given PhIP as part of the diet. The lower limit of detection (LOD) was 1 adduct per 108 DNA bases, and the limit of quantification (LOQ) was 3 adducts per 108 DNA bases in both MS/MS and MS3 scan modes, using 27 μg of DNA for analysis. Measurements were based on isotope dilution with the internal standard, N-(deoxyguanosin-8-yl)-2-amino-1-(trideutero)methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-[2H3C]-PhIP). The selected reaction monitoring (SRM) scan mode in MS/MS was employed to monitor the loss of deoxyribose (dR) from the protonated molecules of the adducts ([M + H − 116]+). The consecutive reaction monitoring (CRM) scan modes in MS3 and MS4 were used to measure and further characterize product ions of the aglycone ion (BH2+) (Guanyl-PhIP). The MS3 scan mode was effective in eliminating isobaric interferences observed in the MS/MS scan mode and resulted in an improved signal-to-noise (S/N) ratio. Moreover, the product ion spectra obtained by the MSn scan modes provided rich structural information about the adduct and were used to corroborate the identity of dG-C8-PhIP. In addition, an isomeric dG-PhIP adduct was detected in vivo. This LC-ESI/MS/MSn method is the first reported application on the use of the MS3 scan mode for the analysis of DNA adducts in vivo.

This publication has 71 references indexed in Scilit: