Abstract
Steady finite amplitude two-dimensional solutions are obtained for the problem of convection in a horizontal fluid layer heated from below and rotating about its vertical axis. Rigid boundaries with prescribed constant temperatures are assumed and the solutions are obtained numerically by the Galerkin method. The existence of steady subcritical finite amplitude solutions is demonstrated for Prandtl numbers P < 1. A stability analysis of the finite amplitude solutions is performed by superimposing arbitrary three-dimensional disturbances. A strong reduction in the domain of stable rolls occurs as the rotation rate is increased. The reduction is most pronounced at low Prandtl numbers. The numerical analysis confirms the small amplitude results of Küppers & Lortz (1969) that all two-dimensional solutions become unstable when the dimensionless rotation rate Ω exceeds a value of about 27 at P ≃ ∞. A brief discussion is given of the three-dimensional time-dependent forms of convection which are realized at rotation rates exceeding the critical value.