Lateral distribution and diffusion of plastocyanin in chloroplast thylakoids.

Abstract
The lateral distribution of plastocyanin in the thylakoid lumen of spinach and pea chloroplasts was studied by combining immunocytochemical localization and kinetic measurements of P700+ reduction at high time resolution. In dark-adapted chloroplasts, the concentration of plastocyanin in the photosystem I containing stroma membranes exceeds that in photosystem II containing grana membranes by a factor of about two. Under these conditions, the reduction of P700+ with a halftime of 12 microseconds after a laser flash of saturating intensity indicates that to greater than 95% of total photosystem I a plastocyanin molecule is bound. An analysis of the labeling densities, the length of the different lumenal regions, and the total amounts of plastocyanin and P700 shows that most of the remaining presumable mobile plastocyanin is found in the granal lumen. This distribution of plastocyanin is consistent with a more negative surface charge density in the stromal than in the granal lumen. During illumination the concentration of plastocyanin in grana increases at the expense of that in stroma lamellae, indicating a light-driven diffusion from stroma to grana regions. Our observations provide evidence that a high concentration of plastocyanin in grana in the light favors the lateral electron transport from cytochrome b6/f complexes in appressed grana across the long distance to photosystem I in nonappressed stroma membranes.