Theory of the semiconductor photon echo

Abstract
The semiconductor Bloch equations are solved numerically for a two-pulse photon-echo configuration. The time-dependent diffracted signal is computed and the significance of many-body effects, carrier relaxation, and dephasing is investigated in detail. Assuming femtosecond-pulse excitation at various intensities and frequencies, distinctly different results are obtained if the exciton or the continuum electron-hole-pair states are excited. It is shown that pure exciton excitation produces a free-induction decay signal and no photon echo. An echo signal is obtained only if continuum states are excited either directly by choosing the central pulse frequencies appropriately or if the band-gap renormalization is sufficiently strong to shift continuum states into resonance. A continuous transition between free-induction decay and photon-echo signal is obtained with increasing excitation amplitude. A perturbative analytical analysis of the equations allows one to identify the role of the many-body effects in producing the different features.