Melting Mechanisms at the Limit of Superheating

Abstract
The atomic-scale details during melting of a surface-free Lennard-Jones crystal were monitored using molecular dynamics simulations. Melting occurs when the superheated crystal spontaneously generates a sufficiently large number of spatially correlated destabilized particles that simultaneously satisfy the Lindemann and Born instability criteria. The accumulation and coalescence of these internal local lattice instabilities constitute the primary mechanism for homogeneous melt nucleation inside the crystal, in lieu of surface nucleation for equilibrium melting. The vibrational and elastic lattice instability criteria as well as the homogeneous nucleation theory all coincide in determining the superheating limit.