Abstract
The in-vitro release of ACTH by fetal rat pituitary glands on days 17, 19 and 21 of pregnancy was measured using radioimmunoassay. The spontaneous release of ACTH, expressed in pg ACTH/gland per h, increased with fetal age, in correlation with the sharp rise in pituitary ACTH content. However, since pituitary ACTH content was nearly sevenfold higher at term than on day 17, while basal release of ACTH was only threefold higher, one can speculate that the spontaneous release of ACTH was proportionally greater on day 17 than on day 21 of gestation. As corticosterone, at a physiological concentration (865 nmol/l), reduced ACTH release, it was concluded that the pituitary gland was one site of the negative feedback action of the corticosteroids during fetal life. Quantities of synthetic ovine corticotrophin releasing factor (CRF) which gave concentrations of 0·3–30 nmol/l in the incubation medium induced a sharp rise in ACTH release which was log-dose dependent between 0·3 and 3 nmolCRF/1 on day 17 and between 0·3 and 30 nmolCRF/1 on days 19 and 21. The response to CRF increased with fetal age. Quantities of arginine vasopressin (AVP) which gave concentrations of 2–200 nmol/l stimulated ACTH release at all stages of gestation investigated. However, the response to AVP was much lower than that to CRF. Potentiation of CRF-induced ACTH release was not observed when whole pituitary glands from 21-day-old fetuses were incubated with AVP (20 nmol/l) + CRF (3 nmol/l). Such results were correlated with the ontogenesis of immunoreactive vasopressin- and CRF-containing fibres in the median eminence of the rat fetus, as well as with the CRF-like immunoreactivity present in adult rat pituitary portal plasma and the AVP content of the fetal rat hypophysis. J. Endocr. (1984) 101, 339–344