Abstract
Our recent studies have demonstrated the presence in neonatal islet cells and intact adult islets of a phosphatidylcholine-directed phospholipase D (PLD) which is activated after phorbol ester stimulation. The present study describes PLD activation in the presence of a carbohydrate insulin secretagogue. At the highest concentration tested (20 mM) the triose, glyceraldehyde, induced formation of phosphatidic acid in cells prelabeled with [14C]arachidonic acid or [3H]myristic acid (164 +/- 7 and 210 +/- 9% of basal phosphatidic acid values, respectively). Experimental confirmation of a concentration-dependent specific activation of PLD was provided by the formation of a transphosphatidylation product, phosphatidylethanol, after stimulation with glyceraldehyde in the presence of added ethanol (1.5%). Additionally, there was an early (within 5 min) rise in [14C]arachidonate-labeled diacylglycerol (139 +/- 7% of basal) accompanied by an increase in intracellular diacylglycerol mass (51 +/- 2 pmol/mg protein) and an increase in membrane-associated protein kinase C activity (183 +/- 5% of basal) which preceded the activation of PLD, as indicated by the time course of glyceraldehyde-stimulated phosphatidylethanol formation in the presence of ethanol. Pretreatment of islet cells with 2 microM 12-O-tetradecanoylphorbol-13-acetate for 18 h, to down-regulate protein kinase C, was without effect on diacylglycerol and phosphatidic acid production after 5 min but inhibited completely the production of phosphatidylethanol at 30 min. The phosphohydrolase inhibitor propranolol (100 microM) potentiated the accumulation of phosphatidic acid and phosphatidylethanol incubation following incubation with glyceraldehyde. These findings demonstrate for the first time that a physiological nutrient activates a phospholipase directed against endogenous phosphatidylcholine in intact islet cells; furthermore, they indicate a role for PLD in a delayed formation of phosphatidic acid in the islet cell. The finding of an early rise in glyceraldehyde-stimulated diacylglycerol (which may be formed de novo or by the action of phospholipase C), suggests that PLD is recruited by the activation of protein kinase C by this nutrient.