Radiation induced effects in glass-rods and fiberoptics have been studied to determine parameters affecting the application of these materials in nuclear technology, i.e. as fiberscopes for visual inspection in severe radiation environments. Different glass and fibertypes have been exposed to fission product gamma radiation. The radiation induced transmission loss was measured with a spectrophotometer and then different annealing methods were examined to improve the transmission properties again. Especially the changes in glass and fiber recovery vs. time as a function of radiation dose and annealing temperature were investigated. Annealing experiments were performed exposing the samples either to temperature treatment or to various light sources such as quartz lamp, arc lamp or UV-laser for optical annealing. The transmission recovery was then investigated either as a function of annealing temperature or of exposure time to the light sources. The results allow conclusions on the design and composition of optical fiber endoscopes to be used in severe radiation environment where image transmission is required in the presence of high level nuclear radiation.