Frequency analysis for multi-dimensional systems. Global dynamics and diffusion
- 1 August 1993
- journal article
- Published by Elsevier in Physica D: Nonlinear Phenomena
- Vol. 67 (1-3), 257-281
- https://doi.org/10.1016/0167-2789(93)90210-r
Abstract
No abstract availableThis publication has 9 references indexed in Scilit:
- The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard mappingPhysica D: Nonlinear Phenomena, 1992
- Long-term bounds on nonlinear Hamiltonian motionPhysica D: Nonlinear Phenomena, 1992
- The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zonesIcarus, 1990
- Arnold diffusion in weakly coupled standard mapsPhysical Review A, 1990
- Inégalités « a priori » pour des tores lagrangiens invariants par des difféomorphismes symplectiquesPublications mathématiques de l'IHÉS, 1989
- Integrability of hamiltonian systems on cantor setsCommunications on Pure and Applied Mathematics, 1982
- A method for determining a stochastic transitionJournal of Mathematical Physics, 1979
- A universal instability of many-dimensional oscillator systemsPhysics Reports, 1979
- On the number of isolating integrals in systems with three degrees of freedomAstrophysics and Space Science, 1971