Analysis of Pyridyloxobutyl DNA Adducts in F344 Rats Chronically Treated with (R)- and (S)-N‘-Nitrosonornicotine
- 4 January 2007
- journal article
- research article
- Published by American Chemical Society (ACS) in Chemical Research in Toxicology
- Vol. 20 (2), 246-256
- https://doi.org/10.1021/tx060208j
Abstract
NNN (1) is an esophageal carcinogen in rats. 2‘-Hydroxylation of NNN is believed to be the major bioactivation pathway for NNN tumorigenicity. (S)-NNN is preferentially metabolized by 2‘-hydroxylation in cultured rat esophagus, whereas there is no preference for 2‘-hydroxylation versus 5‘-hydroxylation in the metabolism of (R)-NNN. 2‘-Hydroxylation of NNN generates the reactive intermediate 4-oxo-4-(3-pyridyl)butanediazohydroxide (8), resulting in the formation of pyridyloxobutyl (POB)-DNA adducts. On the basis of these observations, we hypothesized that (S)-NNN treatment would produce higher levels of POB-DNA adducts than that by (R)-NNN in the rat esophagus. We tested this hypothesis by treating male F344 rats with 10 ppm of (R)-NNN or (S)-NNN in drinking water. After 1, 2, 5, 10, 16, or 20 weeks of treatment, POB-DNA adducts in esophageal, liver, and lung DNA were quantified by HPLC-ESI-MS/MS. In the rat esophagus, (S)-NNN treatment generated levels of POB-DNA adducts 3−5 times higher than (R)-NNN treatment, which supports our hypothesis. 7-[4-(3-Pyridyl)-4-oxobut-1-yl]guanine (7-POB-Gua, 14) was the major adduct detected, followed by O2-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O2-POB-dThd, 11) and O2-[4-(3-pyridyl)-4-oxobut-1-yl]cytosine (POB-Cyt, 15). O6-[4-(3-Pyridyl)-4-oxobut-1-yl]-2‘-deoxyguanosine (O6-POB-dGuo, 10) was not detected. The total POB-DNA adduct levels in the esophagus were 3−11 times higher than those in the liver for (R)-NNN and 2−6 times higher than those for (S)-NNN. In contrast to the esophagus and liver, (R)-NNN treatment produced more POB-DNA adducts than (S)-NNN treatment in the rat lung, which suggested an important role for cytochrome P450 2A3 in NNN metabolism in the rat lung. In both the liver and lung, O2-POB-dThd was the predominant adduct and accumulated during the experiment. The results of this study demonstrate that individual POB-DNA adducts form and persist in the esophagi, livers, and lungs of rats chronically treated with NNN enantiomers and demonstrate that (S)-NNN produces higher levels of POB-DNA adducts in the esophagus than (R)-NNN, suggesting that (S)-NNN is more tumorigenic than (R)-NNN to the rat esophagus.Keywords
This publication has 34 references indexed in Scilit:
- Specificity of cytochrome P450 2A3-catalyzed alpha-hydroxylation of N'-nitrosonornicotine enantiomers.2000
- Base excision repair of DNA in mammalian cellsFEBS Letters, 2000
- Metabolism of N‘-Nitrosonornicotine Enantiomers by Cultured Rat Esophagus and in Vivo in RatsChemical Research in Toxicology, 2000
- Evidence for 4-(3-pyridyl)-4-oxobutylation of DNA in F344 rats treated with the tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and N′-nitrosonornicotineCarcinogenesis: Integrative Cancer Research, 1988
- MUTAGENESIS BY APURINIC/APYRIMIDINIC SITESAnnual Review of Genetics, 1986
- A STUDY OF TOBACCO CARCINOGENESIS .32. INDUCTION OF ORAL CAVITY TUMORS IN F344 RATS BY TOBACCO-SPECIFIC NITROSAMINES AND SNUFF1986
- ENHANCED SENSITIVITY OF P-32-POSTLABELING ANALYSIS OF AROMATIC CARCINOGEN-DNA ADDUCTS1985
- O-6-ALKYLGUANINE-DNA ALKYLTRANSFERASE ACTIVITY IN NORMAL HUMAN-TISSUES AND CELLS1984
- A STUDY OF CHEMICAL CARCINOGENESIS .45. COMPARATIVE CARCINOGENICITY IN A/J MICE AND METABOLISM BY CULTURED MOUSE PERIPHERAL LUNG OF N'-NITROSONORNICOTINE, 4-(METHYLNITROSAMINO)-1-(3-PYRIDYL)-1-BUTANONE, AND THEIR ANALOGS1983
- A STUDY OF CHEMICAL CARCINOGENESIS .50. METABOLISM OF TOBACCO-SPECIFIC NITROSAMINES BY CULTURED RAT NASAL-MUCOSA1983