The relationship between intracellular calcium levels and limb bud chondrogenesis in vitro

Abstract
Under standard culture conditions, chondrogenic expression by stage-21 embryonic chick limb bud mesenchyme is dependent upon high cell plating densities. Alternatively, when cultured in suspension aggregating limb bud cells differentiate exclusively as cartilage. We have previously demonstrated that the aggregation of prechondrogenic limb bud cells is specifically mediated by a Ca2+-dependent mechanism. In the present paper, we examine the involvement of calcium cations in chondrogenic expression in vitro. During cartilage differentiation, we demonstrate that limb bud cells elevate their intracellular Ca2+ levels to achieve a conserved plateau level. This increase in intracellular Ca2+ levels does not occur in sparse cell cultures, which also fail to demonstrate cartilage differentiation. Although elevation of extracellular Ca2+ concentration effects precocious chondrogenesis, ultimately this is substantially lower than in control cultures. In contrast, elevation of intracellular Ca2+ levels by the addition of 0·1 μM-A23187 readily stimulates precocious and extensive cartilage differentiation. 0· μM-A23187 initially elevates intracellular Ca2+ levels to that required for cartilage differentiation but this then continues to increase concomitant with a reduction in cartilage nodule size. 10 μM-retinoic acid completely inhibits chondrogenesis in vitro and elevates intracellular Ca2+ to particularly high levels. Our data indicate the central role of controlled intracellular Ca2+ levels to normal chondrogenic expression. Deviation from this level by cells that either fail to achieve or that exceed it inhibits subsequent cartilage development, and can cause a loss of phenotypic expression by differentiated cartilage.