Abstract
The internal fixation of diaphyseal fractures by bone plates is a well recognized treatment. The normal physiological stress of bone is reduced by plates that cause a negative balance of bone‐remodeling processes. Many investigators have shown that the degree of stress protection is dependent on the rigidity of the plates. It was the aim of this study to quantify mechanical and morphological changes at different locations in a plated diaphyseal bone as a function of differing plate rigidity. Two types of plates with the same size but different materials were used. The stainless steel plates had a modulus of elasticity and bending stiffness 3.2 times higher than the carbon fiber reinforced carbon plates. Both types of plates were applied to the intact right and left femora of six foxhounds for 6 months. The stiffer stainless steel plates led to a significantly higher bone loss and correspondingly greater loss of mechanical properties. These effects were greatest directly beneath the plate and less with increasing distance from the plate.

This publication has 18 references indexed in Scilit: