Abstract
Experiments were conducted with field-grown cotton (Gossypium hirsutum L.) in 1985 and 1986 to determine effects of water deficit on levels of conjugated indole 3-acetic acid (IAA) and abscisic acid (ABA) in young fruits (bolls) and their abscission zones in relation to boll retention. Tissues were harvested three times during an irrigation cycle in 1985. They were harvested twice during an irrigation cycle and once after irrigation in 1986 to determine extent of recoveries of measured parameters. As reported earlier, the free IAA content of abscission zones decreased with moisture stress. Irrigation caused a partial recovery in free IAA content of abscission zones and caused a partial recovery in rate of boll retention. In contrast to free IAA, conjugated IAA increased with water deficit, both in 3-day-old bolls and in their abscission zones. Bolls contained much more ester IAA than their abscission zones. Some, but not all, of the increase in ester IAA in bolls during moisture stress could have come from a conversion of amide-linked IAA. Amide IAA decreased slightly during stress and increased after irrigation, but the concentration was low relative to ester IAA. Free and conjugated ABA both increased during stress and decreased after irrigation. However, the concentration of conjugated ABA remained relatively high in abscission zones. Ester IAA, being more resistant than free IAA to enzymic destruction during stress, may hasten recovery of fruit retention after relief of stress by providing a source of free IAA in abscission zones to inhibit continued abscission.