Abstract
A two-dimensional theory for laminated plates is deduced from the three-dimensional continuum theory for a laminated medium. Plate-stress equations of motion, plate-stress-strain relations, boundary conditions, and plate-displacement equations of motion are presented. The governing equations are employed to study the propagation of harmonic waves in a laminated plate. Dispersion curves are presented and compared with those obtained according to the three-dimensional continuum theory and the exact analysis. An approximate solution for flexural motions obtained by neglecting the gross and local rotatory inertia terms is also discussed.