Abstract
Susceptible plants infected by Pseudomonas solanacearum usually will, largely due to extracellular proteins (EXPs) and the high-molecular-mass extracellular polysaccharide (EPS I) this pathogen produces. Circumstantial evidence suggested that a 28-kDa protein, the single most abundant EXP made by P. solanacearum in culture, is associated with production of EPS I, and thus might have a role in pathogenesis. The 28-kDa EXP was purified and, based on its N-terminal amino acid sequence, an oligonucleotide mixture was made and used as a hybridization probe to clone the gene encoding it. DNA sequence analysis suggested that the coding sequence for the 28-kDa EXP is within a gene, designated tek, that encodes a 58-kDa membrane-associated precursor protein that is processed by signal peptidase II during export. Analysis of radiolabeled polypeptides expressed from tek confirmed that it encodes a 58-kDa precursor protein, which is exported out of the cells as a 55-kDa preprotein and processed extracellularly to release the very basic 28-kDa EXP from its C terminus. The position, transcriptional direction, and regulated expression of tek suggest that it is cotranscribed with xpsR, a gene essential for regulating biosynthesis of EPS I, and reinforces the association of the 28-kDa EXP with virulence. However, since P. solanacearum mutants lacking only the 28-kDa EXP produced wild-type amounts of EPS I and were fully virulent, the function of this protein remains unclear.