Abstract
Mazur, Peter (Oak Ridge National Laboratory, Oak Ridge, Tenn.). Manifestations of injury in yeast cells exposed to subzero temperatures. II. Changes in specific gravity and in the concentration and quantity of cell solids. J. Bacteriol. 82:673–684. 1961.—It has previously been established that subjecting cells of Saccharomyces cerevisiae to rapid cooling to −30 C results in cell death and in certain morphological alterations. The alterations consisted of the loss of the central vacuole and a 50% decrease in volume. The present experiments were concerned with determining whether the volume decrease was the result of the loss of water alone or of water plus cellular solutes. The density of the “frozenthawed” cells was found to increase from 1.14 to 1.25 g/cm3 on the basis of measurements of the sedimentation rate of the cells. Interferometric and refractometric measurements indicated, furthermore, that the concentration of cell solids increased from 20 to 28%, whereas the total mass of cell solids decreased from 25 to 17 μμg/cell. The decrease in cell volume was thus shown to be the result of loss of solution from the cells, a solution containing 11 to 16% solids. Measurements of the rate of dialysis suggested that most or all of these solids had a molecular weight below 600. The findings are consistent with the view that low-temperature exposure destroyed the vacuolar membrane and sufficiently damaged the permeability barriers of the cell to permit escape of low molecular weight compounds. The damage was present a few seconds after thawing, and may, therefore, have been a direct result of intracellular ice crystals which, on the basis of previous studies, are believed to be responsible for death from low-temperature exposure.