Protein Content of Polyhedral Organelles Involved in Coenzyme B 12 -Dependent Degradation of 1,2-Propanediol in Salmonella enterica Serovar Typhimurium LT2
Open Access
- 1 September 2003
- journal article
- Published by American Society for Microbiology in Journal of Bacteriology
- Vol. 185 (17), 5086-5095
- https://doi.org/10.1128/jb.185.17.5086-5095.2003
Abstract
Salmonella enterica forms polyhedral organelles during coenzyme B12-dependent growth on 1,2-propanediol (1,2-PD). Previously, these organelles were shown to consist of a protein shell partly composed of the PduA protein, the majority of the cell's B12-dependent diol dehydratase, and additional unidentified proteins. In this report, the polyhedral organelles involved in B12-dependent 1,2-PD degradation by S. enterica were purified by a combination of detergent extraction and differential and density gradient centrifugation. The course of the purification was monitored by electron microscopy and gel electrophoresis, as well as enzymatic assay of B12-dependent diol dehydratase. Following one- and two-dimensional gel electrophoresis of purified organelles, the identities and relative abundance of their constituent proteins were determined by N-terminal sequencing, protein mass fingerprinting, Western blotting, and densitometry. These analyses indicated that the organelles consisted of at least 15 proteins, including PduABB′CDEGHJKOPTU and one unidentified protein. Seven of the proteins identified (PduABB′JKTU) have some sequence similarity to the shell proteins of carboxysomes (a polyhedral organelle involved in autotrophic CO2 fixation), suggesting that the S. enterica organelles and carboxysomes have a related multiprotein shell. In addition, S. enterica organelles contained four enzymes: B12-dependent diol dehydratase, its putative reactivating factor, aldehyde dehydrogenase, and ATP cob(I)alamin adenosyltransferase. This complement of enzymes indicates that the primary catalytic function of the S. enterica organelles is the conversion of 1,2-PD to propionyl coenzyme A (which is consistent with our prior proposal that the S. enterica organelles function to minimize aldehyde toxicity during growth on 1,2-PD). The possibility that similar protein-bound organelles may be more widespread in nature than currently recognized is discussed.Keywords
This publication has 46 references indexed in Scilit:
- Characterisation of the diol dehydratasepduoperon ofLactobacillus collinoidesFEMS Microbiology Letters, 2002
- PduA Is a Shell Protein of Polyhedral Organelles Involved in Coenzyme B 12 -Dependent Degradation of 1,2-Propanediol in Salmonella enterica Serovar Typhimurium LT2Journal of Bacteriology, 2002
- Microcompartments in Prokaryotes: Carboxysomes and Related PolyhedraApplied and Environmental Microbiology, 2001
- The Alternative Electron Acceptor Tetrathionate Supports B 12 -Dependent Anaerobic Growth of Salmonella enterica Serovar Typhimurium on Ethanolamine or 1,2-PropanediolJournal of Bacteriology, 2001
- CO2 CONCENTRATING MECHANISMS IN PHOTOSYNTHETIC MICROORGANISMSAnnual Review of Plant Physiology and Plant Molecular Biology, 1999
- SOMETHING FROM ALMOST NOTHING: Carbon Dioxide Fixation in ChemoautotrophsAnnual Review of Microbiology, 1998
- The functioning of the CO2 concentrating mechanism in several cyanobacterial strains: a review of general physiological characteristics, genes, proteins, and recent advancesCanadian Journal of Botany, 1998
- Isolation and characterization of a carboxysome shell gene from Thiobacillus neapolitanusMolecular Microbiology, 1994
- The carboxysome, a prokaryotic organelle: a mini-reviewCanadian Journal of Botany, 1991
- Diol dehydratase: N-terminal amino acid sequences and subunit stoichiometryBiochemical and Biophysical Research Communications, 1982