Relaxation of porcine coronary artery to bradykinin. Role of arachidonic acid.

Abstract
Bradykinin-induced relaxation of precontracted, porcine coronary artery (PCA) rings is mediated by distinctly different endothelium-derived relaxing factors depending on the contractile agent used. Thus when contracted with KCl, bradykinin-induced relaxation of PCA rings is mediated solely by nitric oxide (NO), whereas when contracted with the thromboxane mimetic U46619, a small component of the relaxation is attributable to NO and a large component is attributable to a non-NO mechanism that is independent of cyclooxygenase activity. We hypothesized that the non-NO component was mediated by arachidonic acid (AA) or by a non-cyclooxygenase product of AA metabolism. Bradykinin-induced relaxations of PCA rings precontracted with U46619 in the presence of indomethacin (10 mumol/L) were moderately attenuated by the NO synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME, 100 mumol/L), whereas when precontracted with KCl, L-NAME abolished the relaxations. AA produced endothelium-dependent relaxations of rings precontracted with U46619 that were unaffected by L-NAME, whereas AA did not relax rings precontracted with KCl. In rings precontracted with U46619, in the presence of L-NAME and indomethacin the phospholipase inhibitors quinacrine (50 mumol/L) and 4-bromophenacyl bromide (10 mumol/L) attenuated bradykinin- but not AA-induced relaxations. Inhibitors of both lipoxygenase (BW 755c [100 mumol/L] and nafazatrom [20 mumol/L]) and cytochrome P-450 (proadifen [10 mumol/L] and clotrimazole [10 mumol/L]) pathways did not eliminate bradykinin- or AA-induced relaxations, although clotrimazole partially attenuated AA-induced relaxations. These findings suggest that bradykinin-induced relaxation of PCA rings is mediated by AA through a mechanism that is not dependent on cyclooxygenase, lipoxygenase, or cytochrome P-450 pathways.