Staphylococcal Biofilm Exopolysaccharide Protects against Caenorhabditis elegans Immune Defenses

Abstract
Staphylococcus epidermidis and Staphylococcus aureus are leading causes of hospital-acquired infections that have become increasingly difficult to treat due to the prevalence of antibiotic resistance in these organisms. The ability of staphylococci to produce biofilm is an important virulence mechanism that allows bacteria both to adhere to living and artificial surfaces and to resist host immune factors and antibiotics. Here, we show that the icaADBC locus, which synthesizes the biofilm-associated polysaccharide intercellular adhesin (PIA) in staphylococci, is required for the formation of a lethal S. epidermidis infection in the intestine of the model nematode Caenorhabditis elegans. Susceptibility to S. epidermidis infection is influenced by mutation of the C. elegans PMK-1 p38 mitogen-activated protein (MAP) kinase or DAF-2 insulin-signaling pathways. Loss of PIA production abrogates nematocidal activity and leads to reduced bacterial accumulation in the C. elegans intestine, while overexpression of the icaADBC locus in S. aureus augments virulence towards nematodes. PIA-producing S. epidermidis has a significant survival advantage over ica-deficient S. epidermidis within the intestinal tract of wild-type C. elegans, but not in immunocompromised nematodes harboring a loss-of-function mutation in the p38 MAP kinase pathway gene sek-1. Moreover, sek-1 and pmk-1 mutants are equally sensitive to wild-type and icaADBC-deficient S. epidermidis. These results suggest that biofilm exopolysaccharide enhances virulence by playing an immunoprotective role during colonization of the C. elegans intestine. These studies demonstrate that C. elegans can serve as a simple animal model for studying host–pathogen interactions involving staphylococcal biofilm exopolysaccharide and suggest that the protective activity of biofilm matrix represents an ancient conserved function for resisting predation. Biofilm is an agglomeration of microbes bound together by a slimy matrix composed of excreted proteins and polysaccharide polymers. Most bacteria in the environment reside in biofilms, as do 80% or more of those causing human infections, according to some estimates. During infection, biofilm matrix acts as a safe haven, protecting bacterial cells from antibiotics, immune cells, and antimicrobial factors. In this report, we demonstrate that the ability of Staphylococcus epidermidis to produce a lethal infection within the intestinal tract of the roundworm Caenorhabditis elegans depends on the S. epidermidis intercellular adhesion (ica) locus, which is responsible for the synthesis of the principal exopolysaccharide of staphylococcal biofilm, polysaccharide intercellular adhesin (PIA). Using a collection of bacterial and nematode mutants, we show that PIA promotes infection by working against protective immune factors controlled by the C. elegans SEK-1 PMK-1 p38 mitogen-activated protein kinase pathway. In addition to providing further evidence for the immunoprotective function of the biofilm polymer PIA, these results show that C. elegans can be used in a simple, live animal model for the study of host–pathogen interactions involving biofilm matrix.