Phonon renormalization of the electronic effective mass

Abstract
We have made detailed first principle calculations of the phonon contribution to the renormalization of the electronic effective mass of a number of simple metals and alloys. The phonon frequencies and polarization vectors are generated from the interatomic force constants for the material. The force constants are taken from a Born – von Kármán analysis of the experimental phonon dispersion curves determined by inelastic neutron scattering. The electron–phonon interaction is treated using pseudo-potential theory which relates the coupling constant to the electron–ion form factor. For a spherical Fermi surface it is then possible to evaluate numerically the expression for the effective mass with no further approximations. We compare the results obtained with previous work when available and with experiment otherwise.