Purified staphylococcal culture medium stimulates neutral metalloprotease secretion from human articular cartilage

Abstract
Human articular cartilage released significantly increased levels of metal-dependent enzymes capable of degrading collagen, casein, and gelatin at a neutral pH following exposure to a sterile, purified fraction of Staphylococcus aureus culture medium. Neutral metalloprotease activity was determined by radiolabeled substrate assays and substrate gel analysis. The enzymes were activated with 4-aminophenylmercuric acetate and were inhibited by 1, 10-phenanthroline and ethylenediamine tetraacetic acid. Protein immunoblots demonstrated that type I collagenase and stromelysin (matrix metalloproteinase III) secretion was increased following staphylococcal medium challenge. The profile of enzymatic activity induced by staphylococcal medium was directly comparable to that observed with interleukin-1, which was used as a positive control. The staphylococcal medium had no inherent proteolytic activity. Increased production of the neutral metalloproteases collagenase and stromelysin may significantly contribute to the extensive cartilage destruction noted in staphylococcal septic arthritis.