Underwater acoustic networks

Abstract
With the advances in acoustic modem technology that enabled high-rate reliable communications, current research focuses on communication between various remote instruments within a network environment. Underwater acoustic (UWA) networks are generally formed by acoustically connected ocean-bottom sensors, autonomous underwater vehicles, and a surface station, which provides a link to an on-shore control center. While many applications require long-term monitoring of the deployment area, the battery-powered network nodes limit the lifetime of UWA networks. In addition, shallow-water acoustic channel characteristics, such as low available bandwidth, highly varying multipath, and large propagation delays, restrict the efficiency of UWA networks. Within such an environment, designing an UWA network that maximizes throughput and reliability while minimizing the power consumption becomes a very difficult task. The goal of this paper is to survey the existing network technology and its applicability to underwater acoustic channels. In addition, we present a shallow-water acoustic network example and outline some future research directions.