Abstract
Unstacked thylakoid membrane vesicles were obtained from a homogenate of Chlamydomonas reinhardtii by flotation in a 1.8 M sucrose layer containing 5 mM HEPES (N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid)-10 mM EDTA (pH 7.5). Sodium dodecyl sulfate-gradient gel electrophoresis showed that the wildtype membranes have a total of at least 33 polypeptides ranging in molecular weights from 68,000 to less than 10,000. The wild-type and three non-photosynthetic mutant strains were studied with respect to their photosynthetic electron transport properties, their fluorescence rise kinetics, and their membrane polypeptide compositions. The results showed a strong correlation between the presence of a membrane polypeptide (molecular weight = 47,000) and the activity of the photosystem II reaction center. This polypeptide is missing from F34 (a mendelian mutant lacking Q, the primary electron acceptor of photosystem II), but is partially restored in a suppressed strain of F34 in which there is an incomplete recovery of photosystem II activity. In a thermosensitive mutant, T4, the same polypeptide is present in reduced amount only in cells grown at 35 degrees but not in those grown at 25 degrees. Evidence from fluorescence rise kinetics and partial photochemical reactions show that the cells grown at 25 degree are similar to wild-type cells but the cells grown at 35 degrees are greatly deficient in Q.

This publication has 29 references indexed in Scilit: