Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength
Open Access
- 1 August 1993
- journal article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 122 (3), 729-737
- https://doi.org/10.1083/jcb.122.3.729
Abstract
Although a biphasic dependence of cell migration speed on cell-substratum adhesiveness has been predicted theoretically, experimental data directly demonstrating a relationship between these two phenomena have been lacking. To determine whether an optimal strength of cell-substratum adhesive interactions exists for cell migration, we measured quantitatively both the initial attachment strength and migration speed of human smooth muscle cells (HSMCs) on a range of surface concentrations of fibronectin (Fn) and type IV collagen (CnIV). Initial attachment strength was measured in order to characterize short time-scale cell-substratum interactions, which may be representative of dynamic interactions involved in cell migration. The critical fluid shear stress for cell detachment, determined in a radial-flow detachment assay, increased linearly with the surface concentrations of adsorbed Fn and CnIV. The detachment stress required for cells on Fn, 3.6 +/- 0.2 x 10(-3) mu dynes/absorbed molecule, was much greater than that on CnIV, 5.0 +/- 1.4 x 10(-5) mu dynes/absorbed molecule. Time-lapse videomicroscopy of individual cell movement paths showed that the migration behavior of HSMCs on these substrates varied with the absorbed concentration of each matrix protein, exhibiting biphasic dependence. Cell speed reached a maximum at intermediate concentrations of both proteins, with optimal concentrations for migration at 1 x 10(3) molecules/micron2 and 1 x 10(4) molecules/micron2 on Fn and CnIV, respectively. These optimal protein concentrations represent optimal initial attachment strengths corresponding to detachment shear stresses of 3.8 mu dyne/micron2 on Fn and 1.5 mu dyne/micron2 on CnIV. Thus, while the optimal absorbed protein concentrations for migration on Fn and CnIV differed by an order of magnitude, the optimal initial attachment strengths for migration on these two proteins were very similar. Further, the same minimum strength of initial attachment, corresponding to a detachment shear stress of approximately 1 mu dyne/micron2, was required for movement on either protein. These results suggest that initial cell-substratum attachment strength is a central variable governing cell migration speed, able to correlate observations of motility on substrata differing in adhesiveness. They also demonstrate that migration speed depends in biphasic manner on attachment strength, with maximal migration at an intermediate level of cell-substratum adhesiveness.Keywords
This publication has 26 references indexed in Scilit:
- Dynamics of beta 1 integrin-mediated adhesive contacts in motile fibroblasts.The Journal of cell biology, 1992
- Motility of fibronectin receptor-deficient cells on fibronectin and vitronectin: collaborative interactions among integrins [published erratum appears in J Cell Biol 1992 Jul;118(1):217]The Journal of cell biology, 1992
- Relationship between neuronal migration and cell-substratum adhesion: laminin and merosin promote olfactory neuronal migration but are anti-adhesive.The Journal of cell biology, 1991
- Cell locomotion: New research tests old ldeas on membrane and cytoskeletal flowCell Motility, 1991
- An alpha 1/beta 1-like integrin receptor on rat aortic smooth muscle cells mediates adhesion to laminin and collagen types I and IV.Arteriosclerosis: An Official Journal of the American Heart Association, Inc., 1990
- VLA Proteins in the Integrin Family: Structures, Functions, and Their Role on LeukocytesAnnual Review of Immunology, 1990
- Fibrinogen induces adhesion, spreading, and microfilament organization of human endothelial cells in vitro.The Journal of cell biology, 1987
- Integrins: A family of cell surface receptorsCell, 1987
- The Directed Migration of Eukaryotic CellsAnnual Review of Cell Biology, 1986
- The Pathogenesis of Atherosclerosis — An UpdateNew England Journal of Medicine, 1986