Tissue/biomaterial interface characteristics of four elastomers. A transmission electron microscopical study

Abstract
The tissue/biomaterial interface reactions of four elastomers—selected as candidates for scaffolding for tympanic membrane tissue in a total alloplastic middle ear prosthesis—were studied at the electron microscopical level after implantation in the rat middle ear. Time-dependent changes in the phagocyte/polymer interface suggested degradation of porous implants made of Estane polyether urethane, polypropylene oxide, and a poly(ethylene oxide hydantoin) and poly(tetramethylene terephthalate) segmented polyether polyester copolymer (HPOE/PBT copolymer), but not of dense Silastic silicone rubber implants. Silastic was always encapsulated in fibrous tissue. Contact between fibrous tissue and HPOE/PBT copolymer or Estane was established in the third month, but fibrous tissue was never seen close to polypropylene oxide. Bone made contact only with Estane and HPOE/PBT copolymer implants. The bone/copolymer interface showed an electron-dense layer morphologically similar to that seen between bone and hydroxyapatite ceramic, suggesting that with respect to bone HPOE/PBT copolymer behaves like a bioactive implant material. The electron-dense layer was absent at the bone/Estane interface. Estane and especially HPOE/PBT copolymer seem to be suitable as alloplastic tympanic membrane because of their interface behavior with respect to fibrous tissue and bone.