Impaired insulin secretion and glucose tolerance in cell-selective CaV1.2 Ca2+ channel null mice

Abstract
Insulin is secreted from pancreatic β cells in response to an elevation of cytoplasmic Ca2+ resulting from enhanced Ca2+ influx through voltage‐gated Ca2+ channels. Mouse β cells express several types of Ca2+ channel (L‐, R‐ and possibly P/Q‐type). β cell‐selective ablation of the gene encoding the L‐type Ca2+ channel subtype Cav1.2 (βCav1.2−/− mouse) decreased the whole‐cell Ca2+ current by only ∼45%, but almost abolished first‐phase insulin secretion and resulted in systemic glucose intolerance. These effects did not correlate with any major effects on intracellular Ca2+ handling and glucose‐induced electrical activity. However, high‐resolution capacitance measurements of exocytosis in single β cells revealed that the loss of first‐phase insulin secretion in the βCav1.2−/− mouse was associated with the disappearance of a rapid component of exocytosis reflecting fusion of secretory granules physically attached to the Cav1.2 channel. Thus, the conduit of Ca2+ entry determines the ability of the cation to elicit secretion.