The control of synthesis of bacterial cell walls. Interaction in the synthesis of nucleotide precursors

Abstract
Phosphoenolpyruvate–UDP-N-acetylglucosamine enolpyruvyltransferase, UDP-N-acetylglucosamine pyrophosphorylase and CDP-glycerol pyrophosphorylase activities were demonstrated in soluble extracts from Bacillus licheniformis A.T.C.C. 9945. The effect of various nucleotides, sugar nucleotides and sugar phosphates on the nucleotide pyrophosphorylases was investigated. UDP-N-acetylglucosamine pyrophosphorylase was inhibited by UDP-MurAc-pentapeptide (UDP-N-acetylmuramyl-l-alanyl-d-glutamyl- meso-diaminopimelyl-d-alanyl -d-alanine) and CDP-glycerol. CDP-glycerol pyrophosphorylase was inhibited by UDP-MurAc-pentapeptide and stimulated by UDP-N-acetylglucosamine. Interaction between a precursor of one cell-wall polymer and an enzyme involved in the synthesis of a precursor of a second polymer has therefore been demonstrated. The possible role of such interaction in the control of bacterial cell-wall synthesis is discussed. Of the other compounds investigated mono- and di-nucleotides were shown to be inhibitory, indicating that nucleotide pyrophosphorylase activities may be influenced by the energy charge of the cell.