Structure of the catalytic domain of the hepatitis C virus NS2-3 protease
- 23 July 2006
- journal article
- research article
- Published by Springer Nature in Nature
- Vol. 442 (7104), 831-835
- https://doi.org/10.1038/nature04975
Abstract
Over 150 million people are infected with hepatitis C virus, there is no vaccine, and current therapies are not always effective. More efficient antivirals are much sought after, so the report of the crystal structure of the NS2 autoprotease of hepatitis C virus is a major advance. The structure, which reveals NS2 as a dimeric cysteine protease, will help in elucidating NS2's role in the viral life cycle, and it may aid the design of new drugs. Hepatitis C virus is a major global health problem affecting an estimated 170 million people worldwide1. Chronic infection is common and can lead to cirrhosis and liver cancer. There is no vaccine available and current therapies have met with limited success2. The viral RNA genome encodes a polyprotein that includes two proteases essential for virus replication3,4. The NS2-3 protease mediates a single cleavage at the NS2/NS3 junction, whereas the NS3-4A protease cleaves at four downstream sites in the polyprotein. NS3-4A is characterized as a serine protease with a chymotrypsin-like fold5,6, but the enzymatic mechanism of the NS2-3 protease remains unresolved7,8,9. Here we report the crystal structure of the catalytic domain of the NS2-3 protease at 2.3 Å resolution. The structure reveals a dimeric cysteine protease with two composite active sites. For each active site, the catalytic histidine and glutamate residues are contributed by one monomer, and the nucleophilic cysteine by the other. The carboxy-terminal residues remain coordinated in the two active sites, predicting an inactive post-cleavage form. Proteolysis through formation of a composite active site occurs in the context of the viral polyprotein expressed in mammalian cells. These features offer unexpected insights into polyprotein processing by hepatitis C virus and new opportunities for antiviral drug design.Keywords
This publication has 31 references indexed in Scilit:
- Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimerasProceedings of the National Academy of Sciences, 2006
- Evasion of intracellular host defence by hepatitis C virusNature, 2005
- In Vitro Characterization of a Purified NS2/3 Protease Variant of Hepatitis C VirusJournal of Biological Chemistry, 2001
- Characterization of the Hepatitis C Virus NS2/3 Processing Reaction by Using a Purified Precursor ProteinJournal of Virology, 2001
- The design and implementation ofSnBversion 2.0Journal of Applied Crystallography, 1999
- Refined X-ray crystallographic structure of the poliovirus 3C gene product 1 1Edited By D. ReesJournal of Molecular Biology, 1997
- [20] Processing of X-ray diffraction data collected in oscillation modeMethods in Enzymology, 1997
- The CCP4 suite: programs for protein crystallographyActa Crystallographica Section D-Biological Crystallography, 1994
- Protein Structure Comparison by Alignment of Distance MatricesJournal of Molecular Biology, 1993
- Refined Structure of Sindbis Virus Core Protein and Comparison with Other Chymotrypsin-like Serine Proteinase StructuresJournal of Molecular Biology, 1993