Abstract
Cell-cell interactions are thought to play a crucial part in determining the developmental fate of vertebrate cells and regulating their subsequent differentiation. In the peripheral nervous system, for example, signals from neuronal axons determine whether or not some Schwann cells wrap their plasma membrane concentricially around the axon to form a myelin sheath. Moreover, there is some evidence that the interactions between Schwann cells and neurones are not all one way: for example, Schwann cells are thought to provide signals for neuronal sprouting and regeneration. However, there are no clear examples in which Schwann cells have been shown to influence the normal development of neurones. Here I have used purified populations of embryonic sensory neurones and Schwann cells to demonstrate that Schwann cells have a dramatic influence on the development of these neurones. In the presence of Schwann cells, but not other cell types, the sensory neurones undergo a morphological transformation from an immature bipolar form to a mature pseudo-unipolar form. This provides a striking example of the importance of glial cells for neuronal development.