Characterisation of cell‐penetrating peptide‐mediated peptide delivery
- 1 August 2005
- journal article
- Published by Wiley in British Journal of Pharmacology
- Vol. 145 (8), 1093-1102
- https://doi.org/10.1038/sj.bjp.0706279
Abstract
Cell-penetrating peptides such as antennapedia, TAT, transportan and polyarginine have been extensively employed for in vitro and in vivo delivery of biologically active peptides. However, little is known of the relative efficacy, toxicity and uptake mechanism of individual protein transduction domain-peptide conjugates, factors that will be critical in determining the most effective sequence. In the present study, we show by FACS analysis that unconjugated antennapedia, TAT, transportan and polyarginine demonstrate similar kinetic uptake profiles, being maximal at 1-3 h and independent of cell type (HeLa, A549 and CHO cell lines). A comparison of the magnitude of uptake of cell-penetrating peptide conjugates demonstrated that polyarginine=transportan>antennapedia>TAT. However, examination of cellular toxicity showed that antennapedia<TAT<transportan< intersectionpolyarginine, with antennapedia-peptide conjugates having no significant toxicity even at 100 microM. Confocal studies of the mechanism of antennapedia- and TAT-peptide uptake showed that the time course of uptake and their cellular distribution did not correlate with transferrin, a marker of clathrin-mediated endocytosis. In contrast, the peptides co-localised with a marker of lipid rafts domains, cholera toxin, which was attenuated following the disruption of these domains using methyl-beta-cyclodextrin. Overall, comparison of the uptake and toxicity suggests that antennapedia provides the optimal cell-penetrating peptide for peptide delivery in vitro and that both antennapedia- and TAT-mediated peptide delivery occurs predominantly via lipid raft-dependent but clathrin-independent endocytosis.Keywords
This publication has 126 references indexed in Scilit:
- Transcriptional adaptations following exercise in Thoroughbred horse skeletal muscle highlights molecular mechanisms that lead to muscle hypertrophyBMC Genomics, 2009
- Structural and functional-annotation of an equine whole genome oligoarrayBMC Bioinformatics, 2009
- Transcript length bias in RNA-seq data confounds systems biologyBiology Direct, 2009
- IGFBP-5 regulates muscle cell differentiation by binding to IGF-II and switching on the IGF-II auto-regulation loopThe Journal of cell biology, 2008
- Exercise induced stress in horses: Selection of the most stable reference genes for quantitative RT-PCR normalizationBMC Molecular Biology, 2008
- The UCSC Genome Browser Database: 2008 updateNucleic Acids Research, 2007
- From genes to functional classes in the study of biological systemsBMC Bioinformatics, 2007
- BABELOMICS: a systems biology perspective in the functional annotation of genome-scale experimentsNucleic Acids Research, 2006
- Human growth hormone doping in sportBritish Journal of Sports Medicine, 2006
- A deletion in the bovine myostatin gene causes the double–muscled phenotype in cattleNature Genetics, 1997