On the refraction of shock waves at a slow–fast gas interface

Abstract
We present the results of numerical computations of the refraction of a plane shock wave at a CO2/CH4 gas interface. The numerical method was an operator split version of a second-order Godunov method, with adaptive grid refinement. We solved the unsteady, two-dimensional, compressible, Euler equations numerically, assuming perfect gas equations of state, and compared our results with the experiments of Abd-El-Fattah & Henderson. Good agreement was usually obtained, especially when the contamination of the CH4 by the CO2 was taken into account. Remaining discrepancies were ascribed to the uncertainties in measuring certain wave angles, due to sharp curvature, poor definition, or short length of the waves at large angles of incidence. All the main features of the regular and irregular refractions were resolved numerically for shock strengths that were weak, intermediate, or strong. These include free precursor shock waves in the intermediate and strong cases, evanescent (smeared out) compressions in the weak case, and the appearance of an extra expansion wave in the bound precursor refraction (BPR). The structure of a BPR was elucidated for the first time.
Keywords