Abstract
The nerve ending cytosol is bounded by the plasma membrane, the mitochondrial inner membrane and the endoplasmic reticulum membrane, transport across each of which is capable, in theory, of regulating the cytosolic free Ca 2+ concentration. By parallel monitoring of mitochondrial and plasma membrane potentials, ATP levels, Na + gradients and intrasynaptosomal Ca 2+ distribution in preparations of isolated synaptosomes, we conclude the following: ( a ) mitochondria in situ represent a major Ca 2+ pool, regulating the upper steady-state limit of the cytosolic free Ca 2+ concentration by sequestering Ca 2+ reversibly; ( b ) this limit is responsive to the cytosolic Na + concentration, but is below the concentration required for significant exocytosis; ( c ) plasma membrane Ca 2+ transport can be resolved into a constant slow influx, a voltage-dependent and verapamil-sensitive influx and an ATP-dependent efflux, while Ca 2+ efflux driven by the sodium electrochemical potential cannot be detected; ( d ) Ca 2+ regulation by intrasynaptosomal endoplasmic reticulum appears to be of minor significance in the present preparation.