Abstract
Bacterial flagella have rotary motors at their base; embedded in the cytoplasmic membrane and powered by transmembrane ion gradients instead of ATP. Assays have been developed to measure the torque output of individual motors over a wide regime of load, to correlate the energizing proton flux with rotation speed and relate through genetic analysis motor structure to function. These assays promise substantial advances in understanding mechanochemical coupling in these motors. Here, I summarize the present status of our understanding of energy transduction in bacterial flagella and compare this with the case for muscle.