Proportional-resonant controllers and filters for grid-connected voltage-source converters

Abstract
The recently introduced proportional-resonant (PR) controllers and filters, and their suitability for current/voltage control of grid-connected converters, are described. Using the PR controllers, the converter reference tracking performance can be enhanced and previously known shortcomings associated with conventional PI controllers can be alleviated. These shortcomings include steady-state errors in single-phase systems and the need for synchronous dq transformation in three-phase systems. Based on similar control theory, PR filters can also be used for generating the harmonic command reference precisely in an active power filter, especially for single-phase systems, where dq transformation theory is not directly applicable. Another advantage associated with the PR controllers and filters is the possibility of implementing selective harmonic compensation without requiring excessive computational resources. Given these advantages and the belief that PR control will find wide-ranging applications in grid-interfaced converters, PR control theory is revised in detail with a number of practical cases that have been implemented previously, described clearly to give a comprehensive reference on PR control and filtering.