Spatial Microstimuli in Endothelial Mechanosignaling

Abstract
Descriptive and quantitative analyses of microstimuli in living endothelial cells strongly support an integrated mechanism of mechanotransduction regulated by the spatial organization of multiple structural and signaling networks. Endothelial responses to blood flow are regulated at multiple levels of organization extending over scales from vascular beds to single cells, subcellular structures, and individual molecules. Microstimuli at the cellular and subcellular levels exhibit temporal and spatial complexities that are increasingly accessible to measurement. We address the cell and subcellular physical interface between flow-related forces and biomechanical responses of the endothelial cell. Live cell imaging and computational analyses of structural dynamics, two important approaches to microstimulation at this scale, are briefly reviewed.