Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis inNicotiana sylvestris spegazzini and comes
- 1 August 1994
- journal article
- research article
- Published by Springer Nature in Journal of Chemical Ecology
- Vol. 20 (8), 2139-2157
- https://doi.org/10.1007/bf02066250
Abstract
Leaf damage by herbivores inNicotiana sylvestris Spegazzini and Comes (Solanaceae) produces a damage signal that dramatically increasesde novo nicotine synthesis in the roots. The increased synthesis leads to increases in whole-plant nicotine pools, which in turn make plants more resistant to further herbivore attack. Because signal production and the response to the signal occur in widely separated tissues, the speed with which different damage signals exit a damaged leaf can be studied. We propose that electrical damage signals should exit a leaf faster (less than 60 min) than chemical damage signals. Excision of a leaf induces a smaller increase in nicotine production than does puncture damage, so we examined our proposition by excising previously punctured leaves at 1, 60, and 960 min after leaf puncture and quantifying the induced whole-plant nicotine pools six days later when the induced nicotine production had reached a maximum. Significant induced nicotine production occurred only if punctured leaves were excised more than 1 hr after puncture, which is consistent with the characteristics of a slow-moving chemical signal rather than a fast-moving electrical signal. We explore the nature of the chemical signal and demonstrate that additions of 90µg or more of methyl jasmonate (MJ) in an aqueous solution to the roots of hydroponically grown plants inducede novo nicotine synthesis from15NO3 in a manner similar to that induced by leaf damage. We examine the hypothesis that jasmonic acid (JA) functions in the transfer of the damage signal from shoot to root. Using GC-MS techniques to quantify whole-plant JA pools, we demonstrate that leaf damage rapidly (µg) of MJ in a lanolin paste to leaves from hydroponically grown plants significantly increased endogenous root JA pools and increasedde novo nicotine synthesis in these plants. However, the addition of 93µg or less of MJ did not significantly increase endogenous root JA pools and did not significantly affectde novo nicotine synthesis. We propose that wounding increases shoot JA pools, which either directly through transport or indirectly through a systemin-like signal increase root JA pools, which, in turn, stimulate root nicotine synthesis and increase whole-plant nicotine pools.Keywords
This publication has 24 references indexed in Scilit:
- Allocation of 15N from Nitrate to Nicotine: Production and Turnover of a Damage‐Induced Mobile DefenseEcology, 1994
- The Allometry of Nitrogen to Growth and an Inducible Defense under Nitrogen‐Limited GrowthEcology, 1994
- The Biochemistry and the Physiological and Molecular Actions of JasmonatesAnnual Review of Plant Physiology and Plant Molecular Biology, 1993
- Jasmonate, Genes, and Fragrant SignalsPlant Physiology, 1992
- Comparisons of various biological activities of stereoisomers of methyl jasmonatePhytochemistry, 1992
- Structure, Expression, and Antisense Inhibition of the Systemin Precursor GeneScience, 1992
- The Reproductive Consequences Associated with Inducible Alkaloidal Responses in Wild TobaccoEcology, 1990
- Mechanism of damage-induced alkaloid production in wild tobaccoJournal of Chemical Ecology, 1989
- Action potentials as multifunctional signals in plants: a unifying hypothesis to explain apparently disparate wound responsesPlant, Cell & Environment, 1987
- Regulation of Synthesis and Accumulation of Proteinase Inhibitors in Leaves of Wounded Tomato PlantsPublished by American Chemical Society (ACS) ,1983