Two missense mutations causing mild hyperphenylalaninemia associated with DNA haplotype 12

Abstract
The genetic defects responsible for most phenylketonuria (PKU) and hyperphenylalaninemia (HPA) cases are located in the phenylalanine hydroxylase (PAH) gene. Approximately 50–60 mutations have been reported in Caucasians and are reflected in a wide range of clinical severities. Most mutations are linked to specific haplotypes, as defined by eight polymorphic restriction sites in the PAH gene. We hypothesized that there is at least one mild mutation linked to haplotype 12 in the Swedish PKU/HPA population, since 7 of 8 patients carrying haplotype 12 had mild HPA. Sequence analysis revealed a C-to-G transversion at the second base of codon 322, resulting in a substitution of glycine for alanine, in four mutant haplotype 12 genes, and a G-to-A transition at the second base of codon 408, resulting in a substitution of glutamine for arginine, in another three mutant haplotype 12 genes. These mutations segregated with mutant haplotype 12 alleles in nuclear families but were not present on normal or other mutant alleles. Both mutations were tested in a eukaryotic expression system in which enzyme activities of different mutant PAH enzymes reflect the relative severities of the mutations, although these in vitro activities cannot be translated directly into in vivo hepatic activities. The A322G mutant PAH had about 75% and the R408Q mutant PAH about 55% of the wild-type PAH enzyme activity. These in vitro activities are the highest reported for mutant PAH enzymes produced in the same expression system. The A322G and R408Q mutations should therefore be the mildest PAH mutations yet identified and expressed, a conclusion supported by the finding of these mutations in only very mildly affected patients.